Professor Bart-Smith's research group is studying the mechanics of lightweight lattice truss structures for their use as load-bearing structures and impact amelioration systems as well as their possible morphing and thermal management capabilities. Secondly, Bart-Smith and her colleagues are using the principles of static determinacy and tensegrity--with their superior mechanical properties such as stiffness and strength--to develop a three-dimensional morphing foil with the propulsive and control capabilities of a manta ray.


Our research is focused on the application of surface and bulk micromachining to the development of new devices and circuits. We are currently working on the development of micromachined submillimeter-wave circuits for developing waveguide based receiver technology, RF-MEMS devices for cryogenic applications, and cavity based measurements of permittivity for fluids. Previous work includes the development of MEMS based microwave and millimeter-wave phase shifters and wideband switches, wideband monopulse processor circuits and recievers, and polarization agile recievers.


Subscribe to RSS