Multi-emissive Boron PLA Nanoparticles for Vascular Optical Hypoxia Imaging

Cassandra L. Fraser (Chem)
Richard J. Price (BME)
Project Summary

- Boron biomaterials synthesis
- Nanoparticle fabrication & characterization
- Biological testing
Boron Biomaterials

Fluorescence (F)
\[\tau = 1.5 \text{ ns} \]
\[\Phi_F = 0.89 \]

Phosphorescence (P)
\[\tau_0 = 0.17 \text{ s} \]
BNPs & Biological Testing

BNPs: TEM

F

P

CHO Cells

HeLa Cells

Ex Vivo Gracilis Muscle (F)

In Vivo Cremaster Venules (F)

In Vivo Hypoxic Venules (F+P)

2008 Seed Project Results

February 9, 2010
Tumor Hypoxia Imaging

F/P Ratiometric Images (blue = hypoxic tumor region)

Brightfield Image

Carbogen (95 O₂)

Air (21% O₂)

Nitrogen (0 % O₂)
PEGylated BNPs for IV Injection

2008 Seed Project Results

February 9, 2010
Outcomes & Future Plans

• Boron PLA (+ PEG) materials were synthesized
• BNPs were fabricated by nanoprecipitation
• BNPs allow for vascular imaging
 – Microvessels (F = fluorescence)
 – Vascular damage/ischemia (P = phosphorescence)
 – Tumor hypoxia imaging (F/P ratiometric methods)
 – Hypoxia imaging, other (tissue engineering, wound healing, etc)